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Introduction 

The object of this study i s  to investigate the finite t ime stability of periodic and almost 

periodic trajectories in cislunar space. To this end, we have been pursuing a program of 

research in the application of normal forms for Hamiltonian systems. When completed, 

this research w i l l  hopefully provide us with the analytical and computational tools which 

w i l l  enable us to treat a wide variety of mathematical models. 

This report w i l l  be divided into three parts. The first part w i l l  discuss the concept of 

normal forms and their application. This provides the theoretical basis for work done under 

this contract. 

of development, which facilitates the application of the concept of normal forms to pro- 

blems in  celestial mechanics. This package, among other things, enables us to find approxi- 

mate analytical expressions for trajectories which are near points of equilibrium of Hamil- 

tonian systems. The third part discusses the analysis necessary, i n  conjunction wi th  the 

computer output, to enable us to make the desired statements about finite time stability of 

actual trajectories and the accuracy of the approximate analytical expressions. 

The second part w i l l  discuss the computer package, now in i t s  final stages 
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1. 

The theory of Normal Forms for Hamiltonian Systems was introduced by Birkhoff'. It i s  

this theory which we wish to exploit in  order to obtain statments on finite time stability. 

We start by assuming that we wish to solve Hamilton's equations 

Normal Forms for Hamiltonian Systems 

~ 

A. = aH/ayi , 

4 =-aH/ax, , i = 1,2, ... n, 

I 

I 

with a Hamiltonian H (x l  , . . .x , y1 , . . . , yn) which i s  independent of time and has the 

form: 
n 

n (2) 
+ y?) + Hg+  H4+  ... + H + ... 

Wx, I .,x n f Y 1 f  * I  Yn) i= l  i I I S 
= c ( 4 2 )  (x." 

where H i s  a homogeneous polynomial of degree s . The implication of this assumption 

as it pertains to specific problems wi l l  be discussed later. The a ' s  are assumed to be 

real. We now define what we mean by a normal form for Hamiltonian systems,. We say 

that a Hamiltonian function I' ( 

S 

I 

, . . . , $ , ql , . -. Vn) i s  i n  normal form up to degree 

s , i f  
r =  rl + ( 3 )  

where I?' i s  a polynomial of degree 5 s /2 in  the variables p .  = h  ( t.a + 772 ) 
I I 

and r I '  i n  the variables, 

ti , vi . The process of normalizing a Hamiltonian consists of making a series of ( s -2) 

canonicai transformations such ihai ihe i iami l ion ian ( 2 )  expressed in the new Vaiieblej i s  

i n  normal form up to degree 

i s  a power series whose terms all have degree at least s + 1 

s . 

Suppose then we have the equations 

ii = w a g i  , 

0 -  = - a r / a t .  , I - 1, 2, ... n, ii - 1  

(4)  

G. D. Birkhoff, Dynamical Systems, American Mathematical Society Col loquium Publica- 
1 

tions, Vol. 9 (1927) p. 74 
-2- 



RESEARCH CENTER 0 GENERAL PRECISION AEROSPACE 

where r is normalized up to order s + 1. 

W e  first note that if I’ is replaced by 

To see this, w e  note that s ince r ’ 
the equations can be immediately integrated. 

has the form assumed above w e  have 

a r i / a q .  I = ( a r i i / a c . ) v i  I , a r i / a t i  = ( a r i / a p i )  t i  . 
Thus in this case Hamilton’s equations become 

If we now multiply the first equation (5 )  by ti 

add and integrate, w e  see  that C. = constant; hence 

(which depends on the  initial values of c , ,  . . . p . ). 
t ion to ( 5 ), 

and the second equation (5) by q. I f  - 
W. = a r  ‘/a c .  is a constant 

Thus w e  may write down the solu- 

I I I 

n 

= - t i 0 s i n  Gi ( t  - to) + 77. COS G . ( t -  t o ) ,  i = 1,2 ,... n. 
‘i I O  I 

W e  

t h e  

shall see that these expressions can be used as  approximations to the trajectories of 

system (4). W e  see that  they a re  almost periodic,  (for c W. I incommensurable), 

hence bounded. Now 

can b e  written 

consider the full equations (4 )  which in view of the  form of I‘ 

i = 1,2, ... n. 

n 
Now, if w e  let u ’ =.? C. , then by assumption we can find C such that: 

I -  I 
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i f  we multiply the f i rst  equation (7)  by ti , the second by Q. , add and sum 

we find 

I 

lud+l S n C u  s +  a 

From this we easily find that i f  u i s  the init ial value of u we have 
0 

We now ask how long i t  can take for u to double in  value (if 2u s u1 ). For this 

value of t, say t 

0 

we have 1 

hence 
S I t l  - t  0 12 1/2nsCu 0 i f 2 u  0 s u ,  . (9) 

This i s  what we mean by finite time stability. We see that u can be considered as a 

measure of the distance of a point on the trajectory to the origin i n  the ( 5, ?? ) space. 

Then equation (9) says that i f  uo i s  sufficiently small then the time which must elapse 

before this "distance" can double i n  value i s  of the s-th order i n  reciprocal distance. 

Now let ini t ial  values be given for 5 .  and q . We wish to compare the actual solu- 

tion of ( 4 ) with the soiutions, (6 j of the approximate equations (5  j. Corresponding 

to the quantities ci0 , qio we have the init ial  values pi, and uo. We assume now 

that 2u0 S u1 so that we may use (8). Then we have for l t - to)  s 1/2nsCuo 

I 

S , 

Thus 
~ + 3  s + 2 1 t - t o  I, i=l, ... n. I C i - < .  IO I S 2  c u  0 
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Since I i s  a polynomial, we can find a P such that 

Further we have from (7) 

thus combining the last 2 inequalities we conclude ( = ( ar ' /a[ i)o ) 
I 

s +  1 s + 1 +  2s + 4  S + 3  
nCPu 0 I t : t o )  . 

0 

For convenience denote the right hand side of the last inequality by F,' 

then 

d rJ I r( ti COS a. t - q.SinZit) I '2F. 
I I 

S i  mi  lar I y , 
d 1 ( {i Sin g.t + ?'). cos;;;. t )  S 2 F  . 

I I I 

There fore, 

cos G. t - 77. S i n g t  ) 1s 2 5 Fdt, 
e /r 

0 
t I I I I O  1 0  I O  

1 ( t i  cos ~ . t  - V .  Sin 0. t )  - 

c0sG.t ) l s 2 f  Fdt; I( 5 .  Sin Z.t. + 77. cos Z t )  - (ti, Sin Zito + qio 
t 1 0  I I I I 

0 

thus + 
I t i -  [ E .  c o s z ( t - t o )  + v .  S i n G ( t - t  ) ] I  s 4 $  Fdt, 

0 
t 1 0  I I O  I 0 
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lqi - [ - 5 .  Sin 5 ( t -  to)  + q. cos ( t  - t ) ] ! S  4 5 Fdt, 
t 

I O  10 I 0 

0 

or finally 

i = 1, ... n. I t - t  I” , s +E nCPuS +’ s 2 s + a  s+l I t - t  I + 2 
0 0 0 0 

c u  

Equation (10) gives an estimate for the error made in approximating the actual trajectories 

with the expressions given by (6)  which are solutions of the simplified equations (5). 
I 

0 
2nsCu’ 

This estimate is valid over the time interval It - t 1 s 0 

The above analysis i s  essentially the same as that given by Birkhoff i n  reference 1. In 

order to be able to exploit this analysis, three steps are necessary. First the canonical 

transformations which normalize the Hami ltonian and the normalized Hamiltonian must be 

computed. How this i s  done using the computer package w i l l  be discussed in  the next section. 

Once this has been done the approximate solutions, (6)  can easily be computed. Next we 

must make explicit the estimate (8 )  which we need to compute (9) which i s  our basic 

result. Finally i t  i s  necessary to translate this information back to the original coordinates. 

These last two steps w i l l  be discussed in  part three. 
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I I 

As mentioned in  Section I ,  the normalization process i s  one of applying a series of trans- 

formations, each of which normalizes the Hamiltonian to one higher degree. The basic 

result states that the Hamiltonian, (2 )  can be normalized up to degree N i f  

Computer Program for Normalizing the Hamiltonian 

n 
C w. k. # o for integers k with o < L I k. I N. (11 )  i = l  I I I 

We wi l l  now show how this i s  done. 

We assume that H has been normalized up to degree s - 1 and condition ( 11 ) i s  satis- 

fied for N = s .  We introduce a canonical transformation from the old variables (x,y) to 

new variables ( 6 , q ) generated by a generating function W (4 ( X 1 f . .  * r X c  r7J1,. An), n 

a homogeneous polynomial of degree s. The transformation i s  given (implicitly) by 

a w ('1 + -  - 5; - x. 
I a q .  

I 

The idea i s  to choose W 

that as many s -th order terms as possible are eliminated in the new Hamiltonian. If 

(that is, the coefficients of the polynomial) i n  such a way 

1' ( 4 I^- I tnr Vl , a - . ,qn) i s  the new Hamiltonian we have 

We expand both sides in  taylor series and find 
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W e  now write H and I’ as  sums of homogeneous polynomials: 

W e  equate terms of like degree in ( 13)  and find 

so that the  new Hamiltonian is normalized up to order s-1 since it was assumed that H was. 

Equating terms of degree s in ( 13) ,  we have 

In view of ( 2 ) ,  this can be written 

When coefficients of like terms a r e  compared in the last equation, w e  obtain a system of 

linear equations in the coefficients of W”) with unspecified non-homogeneous terms since 

I’ (’) is not known. It turns out  that  for s odd, the matrix of this system is non-singular 

(at this point condition ( 11 ) is used) SO that the system can b e  solved with a n  arbitrary 

non-homogeneous term, i .e.we can find a W(’) so that  ( 14)  is satisfied with I’ - 0 .  

For even s the  matrix does turn out  t o  be singular. In this case, w e  can determine W 

so that ( 1 4 )  is satisfied with I?”) a polynomial of degree s/2 in the variables (x.” + q:) 

with known coefficients. Thus the new Hamiltonian is normalized up to order s. The 

hisher order terms in r a r e  then found by coefficient comparison in ( 13),  since now W 

is known. 

(4 = 

(5) 

I 

(4 

O n c e  t h e  Hamiltonian has been normalized, we may make use of the theory presented in 

Section 1.  Of course in order to use a n y  information obtained from the analysis it is 

necessary to invert the successive transformations and compose them in order to express the 

new coordinates in terms of the  old and vice-versa. In actual practice all the power 

series must be broken off at some point so that  r ” in (3 )  cannot b e  written down exact ly  
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and the transformation from old to new coordinates can only be given approximately in  

explicit form. 

Although the normalization process i s  conceptually simple, the amount of algebra involved 

i s  immense. For this reason, it was felt that i t would be desirable to develop a computer 

program which would do the job of computing the transformation of coordinates and the 

normalized Hamiltonian. An attempt was made to use IBM's FORMAC system of non-numeric 

programming. This attempt proved to be only partially successful as it was found that during 

the execution of the program we developed the core storage capacity of the 7094 was ex- 

ceeded. (As we found later, this i s  a constant source of trouble to the users of the experi- 

mental FORMAC compiler.) It was eventually decided to terminate the FORMAC effort 

and instead, use a program developed by Dr. Fred Gustavson at IBM. This program, written 

i n  FORTRAN IV computes the successive generating functions and the new Hamiltonian. 

A few of  the unique features of this program should be mentioned here. 

Most of the work involves multiplication, addition and differentiation of polynomials in  

2 n indeterminants. To do this a multi-index mapping system i s  developed which enables 

the program to store the coefficients of a polynomial in  a one dimensional array. One sub- 

routine i s  provided which multiplies two polynomials and stores the coefficients of the pro- 

duct polynomial in  the proper sequence. Another subroutine performs differentiation of 

polynomials. In computing the new Hamiltonian (by use of (13) ) a great deal of book- 

keeping must be done to collect a l l  terms of a given degree. Hence, the logical structure 

of this program i s  quite compiex. 

Our computer package consists of three parts. The first i s  the IBM program discussed above. 

The other two parts have been developed here at General Precision. The second part of 

the package i s  a program which performs the calculations to obtain the explicit relationship 

between the old and new coordinates by constructing power series from equation ( 12). 

This program gives the relation between old and new coordinate systems as (truncated) 

power series. This program uses many of the ideas developed i n  the IBM program. 
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A third program solves equation ( 12) numerically to give point-by-point transformations 

from one set of coordinates to another. This program will be used to check the second 

program and also to provide important information about the transformations themselves. 

This is important in the analysis as discussed in the next section. 
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111  Analytical Problems 

In order to apply the concept of normal forms to specific problems certain analytical con- 

siderations must be made. These w i l l  now be discussed. 

We assumed that the Hamiltonian has the form (2 ) .  Of course in  actual problem some 

preliminary transformations must be made in order to bring it into this form. In general, 

we must first make a translation in position-momentum space to bring the equilibrium 

point to the origin. The special form of H results from applying a linear canonical 

transformation. The statement that the W . ' S  are a l l  real i s  equivalent to the condition 

that the eigenvalues of the linearized Hamiltonian equations are pure imaginary. In 

studying trajectories of the restricted three-body problem in  the neighborhood of the 

triangular libration points for instance, we know that this i s  true for the earth-moon mass 

i d s .  Of tmise cny cmsfant term in the Hamiltonian i s  discarded as it plays no role in  

the equations. 

2 

I 

In order to obtain the results we are interested in, the estimate (8 )  must be made explicit. 

Furthermore, the ranges and domains of the transformations ( 12) must be known in  order to 

refer our conclusions about the finite t ime stability back to the original set of coordinates. 

Notice that I' " 
truncated series. An analysis has been made which enables us to obtain estimates for C 

and u i n  equation (8 )  and estimates for the ranges and domains of the transformation 

( 12) but i t  was found that these estimates were too crude to be of practical value when 

applied to specific problems. Thus, it has been conciuded that i n  order i o  obiiiin iisefL;I 

results from this method a careful numerical study must be made of the transformations. 

This w i l l  be done using the third program discussed in  Section 2. Only when the ranges 

and domains of the transformations are accurately known can the method be expected to 

yield useful information. 

i s  not given exactly by the computer since the computer produces only 

1 
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Summary 

The work performed under this contract represents an endeavor to set up an apparatus for 

studying finite time stability i n  a wide variety of models. At first, we have studied only 

autonomous systems in  which we are interested i n  finite time stability of equilibrium points. 

As a first application we are applying our results to the problem of trajectories of the re- 

stricted three-body problem near the triangular libration points in  two and three dimensions. 

In later work, we hope to extend our results to non-autonomous systems in order to study 

stability of periodic orbits in  the restricted three-body problem and the stability of libra- 

tion points in  the ell iptic three-body problem. In this case although many of the details 

are as presented above, the computation of the normalized Hamiltonian becomes more 

diff icult because a l l  coefficients become functions of time. 
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